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Abstract

An alternative approach has been proposed for the analysis and the modelling of ordinal

data: it is based on the psychological process by which a respondent expresses his/her evaluation

about the item with an inherent indecision. This class of models has been developed with many

variants and it is now indicated as cubmodels. The purpose of this paper is to introduce

users to the version 4.0 of a program, written in the R statistical environment, to make effective

applications of cubmodels and variants by exploiting their capabilities both from computational

and graphical points of view. After a specification of the different structures, the basic commands

are presented with some examples. Generalizations and extensions of the standard models are

also mentioned. For a more extensive study a bibliographic note concludes the paper.

Key Words: Ordinal data, cubmodels, cubemodels, Shelter effect, gecubmodels, cushmodels,

ihgmodels

1 Introduction

In several applied researches, data are collected as categorical ordinal observations (Agresti, 2010;

Tutz, 2012). Sometimes they are actually ordered (as in judgements, preferences, degree of adhesion

to a sentence, etc.) whereas, in other circumstances, they are categorized for convenience (age of

people in classes, measures of objects in block of constant size, blood pressure for classifying heart

health status, political ideology, etc.) as discussed by Anderson (1984). It is possible to consider also

ranks as ordinal data if we interpret the ranks of a single object as an ordered evaluation. Caution

is necessary in interpreting ranks of related objects since these evaluations are not independent

(D’Elia and Piccolo, 2005).

The program1 we are going to introduce is a statistical software coded in the R environment

1 The version 4.0 of the cub program is freely available from Authors upon request and may be downloaded at

www.labstat.it/home/wp-content/uploads/2014/11/CUB40.R
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able to specify, estimate and test a large class of parametric structures, generated by the family of

cubmodels. In fact, in the standard option, these models are a (convex) Combination of discrete

U niform and shifted B inomial random variables.

The software is organized on the basis of primary functions (able to perform the general purpose

of building statistical models) which in turn call for several other functions (in charge of limited

and specific objectives). The program is presented as a large script; thus, users can apply also a

subset of the available functions, if necessary and/or convenient for different goals. In most cases

the output of the functions shows graphical displays and a list of indicators/tests to check the

usefulness and the significance of the estimates. Maximum Likelihood (ML) method is applied to

the statistical procedures (estimation and test) for all models built in this program. In most cases

convergence is achieved by means of the EM procedure.

After running a primary function for estimation and testing of a model, several quantities are

available in the computer memory. In this way, the main information about the estimated models

may be saved and maintained for further elaborations and/or model comparisons. Then, simplified

version of the main estimation routines are proposed and they are especially useful when simulation

runs are performed and only few values are necessary to accelerate the performance of the code.

This paper is organized as follows: in the next Section the structure of the program and some

preliminary concepts are examined whereas in Section 3 data input is described. Then, Sections

4-7 are devoted to the presentation of different models and to their corresponding commands.

Inferential issues, simulation routines and plotting facilities are pursued in Sections 8, 9 and 10,

respectively. Examples are illustrated in Section 11 and several area of applications of cubmodels

are listed in Section 12. A bibliographic note ends the paper.

2 Structure of the program

The programm is a long script, adequately commented and subdivided as follows:

I General functions

II Probability distributions

III Log-Likelihood functions
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IV Variance-covariance matrix of parameter estimates

V Initial values of estimates

VI Plotting facilities

VII Simulation routines

VIII CUB models functions

IX Main calls for CUB, CUBE, CUSH and IHG models

In each part, several functions are described and macro-functions (for instance, cub ) are defined.

The different parameters involved in the models are denoted as: pai (π), csi (ξ), phi (φ), delta

(δ), bet (β), gama (γ), omega (ω). The variance-covariance matrix of estimates is designed as

varmat. Notice that only the primary functions of the program are capitalized: CUB, CUBE,

CUSH, IHG. All other functions are denoted with lower case letters.

This paper and the program assume a discrete Uniform random variable as the building block

useful to account for uncertainty in the responses. Alternative solutions are possible leading to

cubmodels with a varying uncertainty (=vcubmodels) as introduced by Gottard, Iannario and

Piccolo (2015). Hereafter, we will not discuss this further option; however, we point out that the

introduction of a different free-parameter distribution for uncertainty requires a limited change in

the code of the current software.

As a general criterion, the number of ordinal categories to be considered, denoted by m, is a

global variable and must be always specified at the beginning of the running of the program. It is

not safe to assume in any case that m is the maximum of the responses since it is possible that no

respondent chooses the highest value of the support.

To start, it is sufficient to run the following commands in the directory where the main program

is resident:

> source("CUB.R")

> m=number-of-ordinal-categories

In addition, it is also possible to include the value of m in the main commands as follows:
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> CUB(ordinal,m=numer_of_ordinal_categories)

Finally, parameter estimates, variance-covariance matrix of the estimates and log-likelihood

value at the maximum are obtained by using *$estimates, *$varmat, *$loglik as in the following

example:

> m=numer_of_ordinal_categories

> model=CUB(ordinal)

> estim=model$estimates

> varest=model$varmat

> maxlik=model$loglik

When the estimation algorithm is iterative also the number of iteration can be retrieved by

using *$niter.

3 Data input

Generally, ordinal data are available as a sample of n ratings r = (r1, r2, . . . , rn)
′, where ri ∈

{1, 2, . . . ,m} for a given m > 3. Thus, the observations r are realizations of a random variable

R and are available as a vector ordinal in the R environment. The same is true for possible

covariates which we introduce to explain responses and improve the fitting. If the input is a data

frame, ordinal data and (concomitant) covariates should be conveniently designed as vector and

matrices, as in the following code:

> dati=read.table("...:/.../...",header=T)

> m=... # specification of m as a global variable

> ordinal=dati[,j] # if ordinal data are in the j-th column

> covar=dati[,lista] # if covariates are listed in the columns

# specified by ’lista’

Sometimes, if results of a survey are presented by means of a table, the ratings are available

as aggregated absolute frequencies (n1, n2, ..., nm)′ in a vector frequencies, and they must be
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expanded to generate a vector of length n = n1+n2+ ...+nm in order to run the primary functions

(for instance, cub ). An example of this code is:

> m=5 # specification of m=5

> frequencies=c(12,18,30,32,8) # absolute frequencies

> ordinal=rep(1:m,frequencies) # a vector of ordinal data

> CUB(ordinal)

Notice that frequencies must be a vector of length m even if some observed frequencies are equal

to 0.

Finally, this program does not allow an automatic processing of possible missing values; several

softwares with different approaches are available in the literature to impute missing values: see

Honaker, King and Blackwell (2011), for instance. Indeed, cubmodels are an effective alternative

for the imputation of missing data by substituting the modal value of the estimated cubmodel for

the complete data set, as shown by Cugnata and Salini (2014).

When missing values are present, to drop them from a vector of ordinal data (ordinal) the

following code may be applied:

> newordinal=na.omit(ordinal)

In presence of missing values, special care should be used if the function implies both ordinal

data and a matrix of covariates since the pattern of missing values may be not homogeneous. Thus,

preliminary analysis should be performed to get vectors and matrices with full and comparable

information.

4 CUB models

The starting point of the new modelling paradigm for ordinal data is a cub random variable R

defined as the mixture of a shifted Binomial and a discrete Uniform distribution over the support

{1, 2, . . . ,m}, for a given m > 3 (Piccolo, 2003). Thus, for j = 1, 2, . . . ,m,

Pr (R = j | π, ξ) = π

(

m− 1

j − 1

)

ξm−j (1− ξ)j−1 + (1− π)
1

m
. (1)
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Then, for any given m > 3, a cubmodel is fully specified when the parameter vector θ = (π, ξ)′ is

known.

If we consider either or both parameters as functions of subjects’ covariates (and we assume a

logistic link between them, for instance), for j = 1, . . . ,m and i = 1, . . . , n, then the stochastic and

the systematic components of a cubmodel with covariates are defined by














Pr (Ri = j | β, γ) = πi bj(ξi) + (1− πi)
1

m
;

logit (πi) = yiβ ; logit (ξi) = wiγ ;

(2)

where bj (ξi) =
(

m−1
j−1

)

ξm−j
i (1− ξi)

j−1, j = 1, . . . ,m is the shifted Binomial distribution and yi and

wi are the i-th rows of the matrices Y and W which contain the subjects’ covariates for explaining

πi and ξi, respectively. In model (1) we define β = (β0, β1, . . . , βp)
′ and γ = (γ0, γ1, . . . , γq)

′. The

program automatically adds a column of 1s; thus, the relevant matrices Y and W to be specified

by the user do not contain a column of constant.

For a given m, a cubmodel with covariates is fully specified when the parameter vector θ =

(β′,γ ′)′ is known.

For making more immediate the interpretation of a cubmodel, uncertainty and feeling may

be related to (1 − πi) and (1 − ξi), respectively. So, the relationships between parameters and

covariates are more conveniently expressed as:

logit (1− πi) = −yiβ ; logit (1− ξi) = −wiγ . (3)

In this regard, we observe that the selection of covariates for uncertainty and/or feeling is a relevant

issue which is currently under investigation; the proposed strategies include backward-forward

approaches and penalized likelihood methods.

In some papers, cubmodels without covariates, with covariates only for πi, with covariates

only for ξi, with covariates for both πi and ξi have been designed as cub(0, 0), cub(p, 0), cub(0, q),

cub(p, q) models, respectively.

If ordinal data are available in the vector ordinal, to build a cubmodel without covariates, it

is sufficient to run:

> m=number-of-ordinal-categories

> CUB(ordinal)
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When matrices Y and W contain the selected columns of subjects’ covariates for uncertainty

(parameters 1−πi) and feeling (parameters 1−ξi), respectively, the commands to build a cubmodel

with covariates are the following:

> CUB(ordinal,Y=paicov) # if paicov includes

# covariates for uncertainty

> CUB(ordinal,W=csicov) # if csicov includes

# covariates for feeling

> CUB(ordinal,Y=paicov, W=csicov) # if paicov and csicov

# include covariates for

# uncertainty and feeling

If covariates are obtained by manipulations or they derive from different data sets it is possible

to bind them (if all vectors have the same length as ordinal) as in the following example:

> x1=dat1[,1]; x2=log(dat2[,3]); x3=1:n # covariates

> CUB(ordinal,Y=cbind(x1,x2),W=cbind(x3,x1*x2) # CUB model

# with covariates

# for uncertainty

# and feeling

After the estimation of a cubmodel without covariates, a plot of the observed relative fre-

quencies and the expected distribution is automatically generated, except when the command

CUB(ordinal,makeplot=FALSE) is performed.

In presence of covariates, the output does not include plots, except when a single dichoto-

mous covariate dum (strictly defined with values 0, 1) is introduced to explain uncertainty and/or

feeling. In these circumstances, an automatic plot is produced to show the estimated probability

distributions conditioned on dum=0 (circled) and dum=1 (dotted), respectively. Typical commands

are:
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> dum=ifelse(Gender=="male",0,1) # dichotomous covariate for Gender

> CUB(ordinal,Y=dum) # CUB model (Gender for uncertainty)

> CUB(ordinal,W=dum) # CUB model (Gender for feeling)

> CUB(ordinal,Y=dum,W=dum) # CUB model (Gender for both

# uncertainty and feeling)

To visualize an estimated cubmodel in the parameter space, with an asymptotic confidence

ellipse around the estimates, the library(ellipse) should be loaded. Then, to draw a 95%

confidence ellipse for the parameter vector (π, ξ), we require the variance-covariance matrix of

estimates (denoted as varmat in the output of the estimation procedure). Thus, the code is the

following.

> library(ellipse)

> source("CUB.R")

> m=number_of_ordinal_categories

> CUB(ordinal)

> plot(1-pai,1-csi,main="Estimated CUB model for ordinal",

xlim=c(0,1),ylim=c(0,1),

xlab=expression(paste("Uncertainty ", (1-pi))),

ylab=expression(paste("Feeling ", (1-xi))))

> lines(ellipse(varmat,centre=c(1-pai,1-csi)), lwd=2)

With a special emphasis on Sensometric analysis, let us consider the H sensory measurements

on the K products collected in the (K ×H) matrix:

Z = {zkh, k = 1, 2, . . . ,K; h = 1, 2, . . . ,H} ,

so that zk = (zk1, zk1, . . . , zkH) is the row vector of the H sensory measurements available for the

k-th product, k = 1, 2, . . . ,K. Then, both subjects’ and objects’ covariates may be introduced in
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the framework of cubmodels, as successfully experienced by Piccolo and D’Elia (2008); Capecchi

and Endrizzi (2015).

In fact, we can jointly consider all K products in a unique cubmodel where parameters and

subjects’ and objects’ characteristics are linked by means of:















πik =
1

1 + e−x
(π)
i

β−zk δ
;

ξik =
1

1 + e−x
(ξ)
i γ−zk η

;

i = 1, 2, . . . , n; k = 1, 2, . . . ,K. (4)

Here, δ = (δ1, . . . , δK)′ and η = (η1, . . . , ηK)′ are parameter vectors which measure the impact

of the characteristics of the product on uncertainty and feeling components, respectively. More

specifically, according to (4), 1 − πik (1 − ξik) is related to uncertainty (feeling) expressed by the

i-th subject, whose profile is specified by x
(π)
i (by x

(ξ)
i ) when faced to the k-th object, whose

physical, chemical and organoleptic characteristics are specified by zk. It should be noted that the

“intercepts” β0 and γ0 of the model (4) contain the joint level effect of the i-th subject and k-th

object with regard to uncertainty and feeling, respectively.

Then, with the same software, it is possible to build cubmodels when both subjects and

objects’ covariates are present, but some preliminary analysis is necessary. First of all, we require

conditional independence of the subjects’ responses given the objects’ covariates. Then, let us

assume that ratings are in the vectors item1,item2,... and they are vectorized into ITEMS. In

addition, subjects’ covariates and objects’ covariates are expanded into Xpaitilde and Ztilde

for uncertainty and into Xcsitilde and Ztilde for feeling, respectively. Finally, the following

command:

> CUB(ITEMS,Y=cbind(Xpaitilde,Ztilde),W=cbind(Xcsitilde,Ztilde))

will generate ML estimates of θ parameters and related statistics. A correct interpretation of these

models should be more immediate if one explicitly considers the estimated relationships for varying

subjects’ and objects’ covariates.

The same commands may be implemented in case of contexts’ covariate (Iannario and Piccolo,

2014).
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5 CUBE models

To take a possible overdispersion of ordinal data into account, cubemodels (Combination of a

discrete U niform and a shifted BE ta-Binomial random variable) have been proposed (Iannario,

2012b, 2014a,b). The specification and implementation of these models require some extra efforts

(especially when covariates are considered) in order to avoid the extremely slow convergence of the

EM algorithm towards the ML estimates. In fact, effective initial values are necessary and studies

are in progress to improve the current rate of convergence.

Let θ = (π, ξ, φ)′. For a given m > 4, we define R a cube random variable if its probability

mass function is defined by:

Pr (R = r | θ) = π gr(ξ, φ) + (1− π)
1

m
, r = 1, 2, . . . ,m , (5)

where gr(ξ, φ) = Pr (X = r) is the distribution of a (shifted) Beta-Binomial random variable X

defined on the same support. A cubemodel for a given m is fully specified by θ = (π, ξ, φ)′.

It is convenient to parameterize the distribution gr(ξ, φ) as:

Pr (X = r) =

(

m− 1

r − 1

)

r
∏

k=1

[1− ξ + φ(k − 1)]
m−r+1
∏

k=1

[ξ + φ(k − 1)]

[1− ξ + φ(r − 1)] [ξ + φ(m− r)]

m−1
∏

k=1

[1 + φ(k − 1)]

, (6)

for r = 1, 2, . . . ,m. In this way, if φ = 0 a cubemodel reduces to a cubmodel and thus cub are

nested into cubemodels. The selection between a cub and a cubemodel can be solved by an

accurate use of Likelihood Ratio Tests (LRT), since the null hypothesis lies on the borderline of

the parameter space (Molenberghs and Verbeke, 2007; Self and Liang, 2003; Vu and Zhou, 1997).

The simplest command to build a cubemodel is:

> CUBE(ordinal) # essential version

Alternatively, the complete version of the command is:

> CUBE(ordinal,starting,maxiter,toler,makeplot,expinform)

# complete version

With the complete versions, users may suggest better starting values, increase the tolerance to reach

a faster convergence and then repeat the running with more accurate starting values. In the default
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options, the observed information matrix is computed to get the asymptotic standard errors of ML

estimates; the expected version of this matrix is also available (by letting expinform=TRUE). In addi-

tion, the plot of the observed and fitted distributions may be omitted (by letting makeplot=FALSE).

It is possible to introduce subjects’ covariates for all components of cubemodels (Piccolo, 2015).

More precisely, the stochastic and the systematic components of a cubemodel with covariates are

defined by:














Pr (Ri = j | θ) = πi hj(ξi, φi) + (1− πi)
1

m
;

logit (πi) = yiβ ; logit (ξi) = wiγ ; log (φi) = ziα ;

(7)

for j = 1, . . . ,m and i = 1, . . . , n.

We let θ = (β′, γ ′,α′)′ whereas hj(ξi, φi) is the (shifted) Beta-Binomial distribution of the

feeling of the i-th subject which has been parameterized as follows:

hj(ξi, φi) =

(

m− 1

j − 1

)

j
∏

k=1

[

1− ξi + φi (k − 1)
]

m−j+1
∏

k=1

[

ξi + φi (k − 1)
]

[

1− ξi + φi (j − 1)
] [

ξi + φi(m− j)
]

m−1
∏

k=1

[

1 + φi (k − 1)
]

, (8)

for j = 1, . . . ,m and i = 1, . . . , n. If φi ≡ 0 ∀i, we get a cubmodel; thus, also cubmodels with

covariates are nested into cubemodels with the corresponding covariates. A cubemodel with

covariates, for a given m, is fully specified by θ = (β′, γ ′,α′)′.

The commands to build cubemodels with covariates Y ,W ,Z for explaining uncertainty, feeling

and overdispersion, respectively, are the following:

> CUBE(ordinal,Y,W,Z) # essential version

> CUBE(ordinal,Y,W,Z,starting,maxiter,toler)

# complete version

In the current version of the program, it is also possible to insert covariates only for the param-

eters ξi.

As already mentioned (with special regard to cubemodels with covariates), accurate starting

values for cubemodel are indeed necessary, given the lengthy convergence process of the EM

algorithm. As an effective strategy, the following steps are suggested:
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• start the estimation procedure with a small random subset of the whole sample;

• re-start the estimation procedure on the whole data set and give as starting values those

obtained in the small subset experiment with a very high tolerance (toler=0.1, say);

• plug these new preliminary estimates in the command to search for the final and more efficient

estimates (with a more severe value of toler).

In some circumstances, it may be also convenient to reiterate the proposed strategy several

times to achieve better and faster results.

6 CUB models with shelter effect

In different fields, a proportion of respondents may choose a category c ∈ {1, 2, . . . ,m} which

represents a sort of “refuge” to avoid a more demanding selection: this circumstance has been

named a shelter effect and the corresponding option a shelter category (Corduas, Iannario and

Piccolo, 2009; Iannario, 2012a; Iannario and Piccolo, 2014). In the family of cubmodels this

component is effectively estimated, for a known c, by introducing a dummy variable D
(c)
r which is 0

but for (R = c) where it assumes value 1. It is defined by the indicator function as D
(c)
r = I(R = c);

thus, Pr
(

D(c)
r = c

)

= 1.

Formally, there are three equivalent formulations of a cubmodel with a shelter effect.

• (Extended cubmodel)

Pr (R = r | θ) = π1 br(ξ) + π2
1

m
+ (1− π1 − π2)D

(c)
r , (9)

where θ = (π1, π2, ξ)
′ is the parameter vector characterizing the distribution of this new

mixture random variable. For a given order of components, such models are identifiable for

m > 4 and require π1 > 0, π2 ≥ 0, π1 + π2 ≤ 1, 0 ≤ ξ ≤ 1. Then, the parameter vector is

θ = (π1, π2, ξ)
′.

In this formulation, the quantity δ = 1−π1−π2 measures the added relative contribution of

the shelter choice at R = c with respect to the standard version of the model. Of course, if

π1 + π2 = 1 the extended cubmodel collapses to the standard one. Instead, if π2 = 0 we are

considering a mixture of a shifted Binomial distribution and a degenerate probability mass
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function at (R = c). Finally, if π2 = 0 and π1 → 0 the extended model is able to account

also for the (rare) situation where most of respondents’ choices are concentrated on a single

intermediate category.

• (Explicit shelter effect)

Pr (R = r | θ) = δ

[

D(c)
r

]

+ (1− δ)

[

π∗ br(ξ) + (1− π∗)
1

m

]

, r = 1, 2, , . . . ,m. (10)

This model is equivalent to the previous one thanks to the relationships:











π∗ =
π1

π1 + π2
;

δ = 1− π1 − π2;

⇐⇒















π1 = π∗(1− δ);

π2 = (1− π∗)(1− δ) .

In this formulation the parameter vector is θ = (π∗, ξ, δ)′ and it is immediate to quantify

the shelter effect by means of the parameter δ. Moreover, the modification of uncertainty

induced by the introduction of such an effect is evaluated by comparing the π parameter in

a standard cubmodel (1) with the π∗ parameter in the modified model (10).

• (Satisficing interpretation)

Pr (R = r | θ) = λ br(ξ) + (1− λ)

[

η
1

m
+ (1− η)D(c)

r

]

, r = 1, 2, , . . . ,m. (11)

For the third formulation the parameter vector is θ = (λ, ξ, η)′ and a meditated choice and

a lazy selection are clearly separated as the first and the second component of the decision

process, respectively. Again, this model is equivalent to the previous ones given the one-to-one

relationships:















λ = π∗(1− δ) = π1;

η =
(1− π)(1− δ)

1− π(1− δ)
=

π2
1− π1

;

⇐⇒















π∗ =
λ

λ+ η(1− λ)
;

δ = (1− λ)(1 − η) .

Since all these formulations are formally equivalent, picking one of them is a matter of con-

venience for the interpretation. In the program the code is formulated according to the first

formulation but parameters are also presented in the second formulation. The third formulation

may be used, after the estimation step, for specific interpretations. Notice that the one-to-one
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correspondence among the formulations guarantees that each of them gives asymptotically efficient

ML estimates for the parameters.

The code to build a cubmodel with a shelter effect at the shelter category is:

> m=number_of_ordinal_categories

> CUB(ordinal,shelter)

The cubmodel with covariates for the shelter effect has been named a gecubmodel (=Generalized

cubmodel) in Iannario and Piccolo (2012b, 2015a) where it is defined, according to the second for-

mulation (10), as:

Pr (R = r) = δi

[

D(c)
r

]

+ (1− δi)

[

πi br(ξi) + (1− πi)
1

m

]

, r = 1, 2, , . . . ,m. (12)

Given the knowledge of the matrices Y , W and W containing the information of the subjects, the

links are established as:

logit (πi) = yiβ ; logit (ξi) = wiγ ; logit (δi) = xiω ; i = 1, 2, . . . , n. (13)

A full estimation of a gecubmodel with covariates is currently available in a program written

in GAUSS c© language and available from Authors upon request.

A very special gecubmodel in case π ≡ 0 ∀i has been designed by Capecchi and Piccolo (2015)

as a cushmodel (a Combination of a discrete U niform random variable with a SH elter effect). It

is specified by the following probability mass function:

Pr(R = r) = δ D(c)
r + (1− δ)

1

m
, r = 1, 2, . . . ,m , (14)

for any δ ∈ [0, 1]. In fact, a cushmodel is just a cubmodel with a shelter effect and such that

π1 = 0 or π∗ = 0 or λ = 0 according to the three previous formulations, respectively; however, in

real situations, this model deserves specific analysis and allows useful consideration.

When covariates for the shelter effect are significant, a cushmodel with covariates is defined

by:

Pr(R = r | xi) = δiD
(c)
r + (1− δi)

1

m
; logit(δi) = xiω ; i = 1, . . . , n , (15)

where information on the subjects’ covariates are collected in the matrix X.

The main commands are the following:
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> m=number_of_ordinal_categories

> CUSH(ordinal,shelter) # CUSH model without covariates

> CUSH(ordinal,shelter,X) # CUSH model with covariates in X

The cush function has the default option makeplot=TRUE (which may be changed to makeplot=FALSE

if plots have to be dropped).

7 IHG models

In a series of papers, mainly motivated by the marginal analysis of observed ranks, D’Elia (1999,

2001, 2003) considered the Inverse (or Negative) Hypergeometric distribution (IHG) as an useful

data generating process for ordinal data in the special cases where the modal preference is located

at one of the extreme value of the support. For a given m, this random variable is characterized

by a single parameter θ which is a measure of preference, attraction, pleasantness, etc. towards

the item. If θ = 1/m, the ihg random variable reduces to the discrete Uniform distribution; as

a consequence, to save identifiability, an uncertainty component is never added to this class of

models.

Although a different approach has led to ihgmodels, this family of random variables are consid-

ered in this program since ihg random variables may be considered as a specific case of cubemodels.

The stochastic and systematic components of the ihg model are:















Pr (Yi = j | γ) = θi(1− θi)
j−1 m− 1

m

j
∏

s=1

m− s+ 1

m− s+ θi(s− 1)
;

logit(θi) = u
(γ)
i γ ;

for j = 1, . . . ,m and i = 1, . . . , n. Here, u
(γ)
i is the i-th row of the matrix U which includes useful

covariates for explaining the responses.

The following commands should be run to estimate ihgmodels, without and with covariates:

> m=number_of_categories

> IHG(ordinal) # IHG model without covariates

> IHG(ordinal,U) # IHG model with covariates in U

In addition, the command
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> plotloglikihg(frequencies)

plots the log-likelihood function of an ihgmodel over the whole support of θ for a sample whose

absolute frequency distribution is summarized in the frequencies of m elements.

Notice that the interpretation of the parameter θ is related to m; thus, some caution should be

exerted when comparing the preference parameters estimated from surveys with a different number

of categories (Iannario and Piccolo, 2015b).

8 Inferential issues

A full usage of the program implies some knowledge of the selected estimation routines and the

several measures computed to test and validate the estimated models. In addition, the availability

of many functions allow researchers to set up further tools for their specific needs.

First of all, the ML method is performed thanks to the EM procedure (Piccolo, 2006) which

requires accurate initial values to reach convergence in acceptable time. This goal has been effec-

tively and automatically obtained by means of specific functions: inibest, inigrid, inibestgama,

inibestcube and iniihg.

For cubmodels and ihgwithout covariates default are inibest and iniihg, respectively; for

cubmodels with covariates for feeling the program always implements inibestgama whereas for

cubemodels (without covariates) inibestcube is performed.

If these initial estimates are required, they can be obtained as follows:

> inibest(freq) # automatically computed for CUB models

> iniihg(freq) # automatically computed for IHG models

> inigrid(freq,x,y) # given as a reference for CUB models

# for selected x and y values

# for pai and csi, respectively

> inibestgama(ordinal,W) # automatically computed for CUB models

# with covariates W for feeling
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> inibestcube(ordinal) # automatically computed for CUBE models

> inibestcubecov(ordinal,Y,W,Z)

# automatically computed for CUBE models

# with covariates Y (uncertainty),

# W (feeling), Z (overdispersion)

Observe that the functions inibest, iniihg and inigrid are applied to a vector of absolute

frequencies (freq) whereas the functions inibestgama, inibestcube and inibestcubecov require

the vector of sample data (ordinal).

Secondly, for each parameter of cub and cubemodels, the output of the program shows pa-

rameter estimates, asymptotic standard errors, Wald-tests and p-values. The variance-covariance

and the correlation matrices of estimates are also presented. In this respect, the common caveats

apply when testing borderline hypotheses (Molenberghs and Verbeke, 2007); on the contrary, for

Wald tests of the parameters of covariates the asymptotic theory may be safely applied.

Third, a list of likelihood-based measures and several (general and specific) fitting indexes are

printed: dissimilarity measures, Pearson X2 and deviance. In addition, to compare non-nested

models, also AIC (Akaike, 1974), BIC (Schwarz, 1978) and ICOMP (Bodzogan, 1990) measures are

computed.

Then, for cub and cubemodels without covariates, the program presents a table where -for

each category- observed relative frequencies, estimated probabilities, Pearson and relative residuals

are listed.

Finally, for cubmodels with 1 or 2 discrete covariates for the parameter of feeling (ξ) it is

possible to obtain the X2 index of Pearson according to the command:

> chi2cub(m,ordinal,W,pai,gama)

Possible modifications when the covariates are relevant for the parameter of uncertainty (ξ) are

immediate.
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9 Plotting facilities

An added value of cubmodels is the easiness of interpretation when estimated models are plotted

as points in the parameter space, that is the unit square.

In addition to the standard graphical output of cub, cube, cush and ihgmodels, a simple

graphical device is based on the function cubvisual: it shows a cubmodel for the data vector

ordinal as a single point in the parameter space with some useful options. If necessary, other

estimated models (=points) may be added with the standard commands of the R environment (as

points(.) and lines(.), for instance). Thus, the code is the following:

> m=number-of-categories

> cubvisual(ordinal) # minimal information

> cubvisual(ordinal,caption,labordinal, maxiter,toler,xlim,ylim)

# complete options

A general opportunity is offered by the function multicub which allows to plot, with several

options, many estimated cubmodels over the same unit square if the ordinal responses to different

items are included in a number of columns (greater than 1) of a matrix matord.

The minimal and complete commands of multicub are:

> multicub(matord,m) # minimal information

> multicub(matord,m,labordinal,caption,colo,symb,

thickness,xwidth,ywidth)

# complete options

Thus, for each point (=estimated cubmodel), we may specify a label (with labordinal), a

title (with caption), colours (with colo), symbols (with symb), the thickness of the points and

the size of the plot with xwidth and ywidth (the unit square is the default).

Finally, a visual tool for cubmodels with covariates is the Scatter of Parameter Estimates

(= SPE) plot which consists in drawing the estimated (π̂i, ξ̂i), for i = 1, 2, . . . , n, over the unit
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square. This scatter plot is able to detect peculiar behaviour in subsets of respondents, as we will

show in Section 11 with a real case study.

From a general point of view, the results of the estimation of a cubmodel (and variants) can

be usefully exploited by alternative graphical devices.

• In the parameter space, each estimated model (without covariates) is a single point where

uncertainty and feeling are immediately recognized. If covariates assume discrete categories,

a sequence of points is plotted; in the case of a continuous covariate it is possible to plot

a parametric curve showing how uncertainty and feeling change with the selected covariate.

When several covariates are involved in the estimated model, some conditional plots are

necessary to emphasize the effect of each of them.

• To show the effect of a covariate on the uncertainty or feeling, it is convenient to plot the

logistic link as a function of the selected covariate, respectively.

• To derive the expected profile of the respondents, it is wise to plot the whole probability mass

function of the resulting cubmodel after conditioning on selected values of the covariates.

10 Simulation routines

If pseudo-random numbers have to be generated within the family of cubmodels, the following

functions are available.

> simcub(n,m,pai,csi) # generate n observations from

# a CUB model with parameters

# (pai, csi), for a given m

> simcubshe(n,m,pai,csi,delta,shelter)# generate n observations

# from a CUB model

# with a shelter effect

# and with parameters (pai, csi)

> simcube(n,m,pai,csi,phi) # generate n observations from
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# a CUBE model with

# parameters (pai, csi, phi)

> simcush(n,m,delta,shelter) # generate n observations from

# a CUSH model with

# parameters (delta, shelter)

> simihg(n,theta) # generate n observations from

# an IHG model with

# parameter (theta)

In order to simulate observations from a model with covariates, one should first obtain the

parameters (πi, ξi, . . . ) corresponding to the chosen profiles for the subjects and then generate the

sample data by using the previous simulation routines with the given parameters.

When performing simulation experiments on the behaviour of estimates and/or fitting indexes,

it is useful to apply routines which are not so elaborate with respect to the presentation of re-

sults. Thus, the program includes simplified code of the estimation and testing of cub, cube and

cush functions, respectively, which have been finalized to perform long run of simulation experi-

ments.

To activate these commands, use the following codes:

> cub00forsim(ordinal,maxiter,toler) # CUB model

> cubeforsim(ordinal,starting,maxiter,toler) # CUBE model

> cushforsim(ordinal,shelter) # CUSH model

For a standard cubmodel we may modify both maxiter (the maximum number of iterations

allowed) and toler (the criterion for convergence based on the increment of log-likelihood func-

tions). In addition, for cubemodels we may also modify starting (the sequence of initial values

for the estimates of parameters).
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11 Some examples

The previous commands are exemplified in some real and artificial situations with a main emphasis

on the graphical outputs.

First of all, given m = 9, we generate n = 500 ordinal observations from a cubmodel with

π = 0.7 and ξ = 0.2. Then, we estimate the parameters (π̂, ξ̂) and plot them in the parameter

space with a 95% confidence ellipse. The parameters correlation is also computed and displayed:

this is possible since CUB function calls for cub00 which assigns varmat to the variance-covariance

of the estimates.

In Figure 1, we present the output of cubmodel estimation run (upper panel) and the visual-

ization of the estimated cubmodel in the parameter space (bottom panel). The code (with detailed

comments) is the following.

> source("CUB.R")

> m=9; n=500

> pai=0.7; csi=0.2

> ordinal=simcub(n,m,pai,csi)

> ### Split of the screen in two panels

> par(mfrow=c(2,1))

> par(mar=c(5,4,3,2)+0.1)

> ### First plot

> CUB(ordinal)

> ### Second plot

> plot(1-pai,1-csi,main="CUB model for ordinal",cex=1.2,cex.main=1,

las=1,pch=19, xlim=c(0.2,0.4),ylim=c(0.7,0.9),

font.lab=4,cex.lab=1,

xlab=expression(paste("Uncertainty ", (1-pi))),

ylab=expression(paste("Feeling ", (1-xi))))

> ### Compute parameter correlations

> corrpar=varmat[1,2]/sqrt(varmat[1,1]*varmat[2,2])

> labelcorr=paste("Parameters correlation =",round(corrpar,3))
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Figure 1: Observed and estimated distribution (upper) and visualization of the cubmodel in the

parameter space (bottom)

> text(0.23,0.89,labels=labelcorr,font=4,cex=0.8)

> ### Draw ellipse

> library(ellipse)

> plot(1-pai,1-csi,main="CUB model for ordinal",

cex=1.2,cex.main=1, font.lab=4,cex.lab=1,

pch=19, xlim=c(0.15,0.30),ylim=c(0.75,0.85),

xlab=expression(paste("Uncertainty ", (1-pi))),

ylab=expression(paste("Feeling ", (1-xi))))

> lines(ellipse(varmat,centre=c(1-pai,1-csi)),lwd=2,col="red")
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> par(mar=c(5,4,4,2)+0.1)

> par(mfrow=c(1,1))
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Figure 2: A visual representation of two estimated cubmodels in the parameter space

As a second example, we use the command cubvisual which plots an estimated cubmodel

(without covariates) for a single vector ordinal1 as a point in the parameter space. Then, on

the same plot, we add the representation of a further cubmodel estimated on a different vector

ordinal2 with the R command points(. . . ). Code commands follow and results are shown in

Figure 2.

> source("CUB.R")

> m=7

> ### First model for ordinal1 ("blue")

> cubvisual(ordinal1,"ORDINAL-1")

> ### Second model for ordinal2 ("red")

> cub00(ordinal2,makeplot=FALSE)

> points(1-pai,1-csi,pch=19,cex=1.5,col="red")

> text(1-pai,1-csi,labels="ORDINAL-2",font=4,pos=1,
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offset=0.5,cex=0.8)
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Figure 3: Usage of multicub command: standard version (upper) and more elaborated version

(bottom)

As a third example, we use the multicub command on a real data set concerning several

evaluations expressed on a Likert scale with m = 10 by users of a public bus transport to/from a

metropolitan area. We assume that all ordinal data have been loaded in a matrix dati, consisting

of n = 105 ratings on nk = 16 items.

The first command of the following code is the standard version (upper panel of Figure 3)

whereas the second one is a more elaborated version of the same command (bottom panel of Figure

3).

> source("CUB.R")
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> dati=read.table("C:/.../Transports.R",header=TRUE)

> m=10

> par(mfrow=c(2,1))

> par(mar=c(5,4,3,2)+0.1)

### First plot (upper)

> multicub(dati,m)

### Second plot (bottom)

> multicub(dati,m,etich=LETTERS[1:ncol(dati)],

titolo="CUB models for Bus Transportation survey",

colori="black",simboli=19,thickness=1.5,

xwidth=c(0.3,0.9),ywidth=c(0,0.7))

> par(mar=c(5,4,4,2)+0.1)

> par(mfrow=c(1,1))

As a fourth example, we consider a large data set called nes96 –discussed by Faraway (2006,

pp.106-112) in the context of a multinomial logit model, among others– which consists in the

evaluation of 944 respondents with respect to the political Left-Right orientation of Bill Clinton

(=ClinLR). This evaluation is examined as a function of party identification (=PID), age in years

(=Age) and education level (=Educ) of the respondents. The ordinal variables ClinLR and PID are

expressed on a Likert scale ranging from Surely Left = 1 up to Surely Right = 7. We report the

commands for the best cubmodel obtained to explain the responses ClinLR.

Then, we plot the SPE diagram for all respondents, by introducing a new variable to re-define

PID with the following simplified recoding scheme:

RePID =



























−1 if PID = 1, 2 ;

0 if PID = 3, 4, 5 ;

1 if PID = 6, 7 .

In this way, RePID is a rough classification of the political orientation of the respondent as Democrat

(RePID= −1), Intermediate (RePID= 0) and Republican (RePID= +1), respectively.

### Read data and define variables
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Figure 4: A typical Scatter Plot of Estimates (SPE )

> dati=read.table("C:/.../nes_96.txt",header=T)

> ClinLR=dati$ClinLR # 1...7

> PID=dati$PID # 1...7

> Age=dati$age # 19...91

> Educ=dati$educ # 1...7

> n=length(ClinLR) # n=944

### Estimate CUB model with covariates

> source("CUB.R")

> m=7

> Y=cbind(PID,Age,Educ); W=cbind(PID,Educ)
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> CUB(ClinLR,Y,W)

### Numerical estimates of the parameters

#####################

### bet=c(-5.985787, 0.355111, 0.043023, 1.284132)

### gama=c(-0.068924, 0.183626, 0.052654)

#####################

### Recode PID by means of RePID

> RePID=rep(NA,n)

> RePID[PID==1 | PID==2]=-1

> RePID[PID==3 | PID==4 | PID==5]=0

> RePID[PID==6 | PID==7]=1

##################

### make the SPE plot

> paivet=logis(Y,bet)

> csivet=logis(W,gama)

### Figure 3

> caption="Scatter plot of estimated parameters"

> symb=rep(19,n); symb[repid==0]=1; symb[repid==1]=8;

> colo=rep("red",n); colo[repid==0]="blue";

colo[repid==1]="black"

> plot(1-paivet,1-csivet,xlim=c(0,0.89),ylim=c(0.17,0.46),

cex=1.5,pch=symb,col=colo,

xlab=expression(1-pi),ylab=expression(1-xi),

main=caption,font.main=4)

With adequate codes for symbols and colours of the points, Figure 4 clearly visualizes a different

behaviour of the respondents as function of RePID and make easier the interpretation of the results.

The estimated points (π̂i, ξ̂i), for i = 1, 2, . . . , n are easily obtained as functions of the values of the

subjects’ covariates via a logit link which is computed with the function logis() included in the

main program. Thus, to obtain the SPE plot new functions are not required.
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12 Empirical evidence for CUB models

Ordinal data arise in several applied and scientific fields; thus, the applications of related models

are pervasive in the statistical literature. With regard to the application of cubmodels and their

variants we list the topics where they have been successfully applied to the best of our knowledge

(ranking∗ and rating analysis are reported). Most of the data sets here quoted are available at

www.labstat.it website.

• Preferences:

Colours∗ (young people, children, air force cadets). Cities where to live∗. Professions for

students of Political Sciences graduates∗. Olive oils preference. Coffee preference. Senso-

metric analysis and consumers’ behaviours. Typical agri-products of South of Italy. Italian

newspapers∗. Political affairs: Left/Right self-placement.

• Evaluations:

Orientation services at University. University teaching and structures. Services for E-bay

users. Importance and performance of products. Repeatability and reproducibility in Mea-

surement System Analysis. Characteristics of bus transports towards a metropolitan area∗.

Degree of preference for buying equo-solidal agricultural products. Quality of services in a

protected area. Customers’ satisfaction of European consumers towards salmon. Judgment

of a city administration. Final degree of University graduates. Questionnaire validation for

patient satisfaction.

• Perceptions:

Urban audit surveys about city emergencies∗. Perceived risk in a printing factory. Chronic

pain threshold in TMD. Synonyms and semantic space of words∗. Ethnical identity of im-

migrants by cohorts∗. European Union objectives and policies∗. Perception of Economic

Security and Job satisfaction in SHIW surveys. Measure of Happiness. Job satisfaction of

Italian graduates. Work related problems in Eurofound surveys. Subjective survival prob-

ability to 75 and 90 years. Importance-Performance analysis in marketing research. Coffee

tasting. Consumer perception of wine attributes. Level of teachers’ stress. Intention to Hu-

man Papilloma Virus vaccination. Intention to seasonal influenza vaccination. Conflict with

job environment.
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13 Bibliographic notes

The cubmodel framework started with Piccolo (2003) and it has been mainly exploited for rank

data by D’Elia and Piccolo (2005). Inferential issues for estimation and testing purposes have been

established in Piccolo (2006). The identifiability of cubmodels has been proved by Iannario (2010).

The modern approach is presented in Iannario (2012a,b) and Iannario and Piccolo (2012a).

Preliminary estimates have been repeatedly tested (Iannario, 2008, 2009b, 2012c) and specific

fitting measures for ordinal data models have been proposed (Iannario, 2009a).

The extension of cubmodels with subjects’ covariates has been obtained by Piccolo (2006);

Iannario and Piccolo (2010). The analysis with both subjects’ and objects’ covariates has been

firstly performed in Piccolo and D’Elia (2008); further examples are in Capecchi and Endrizzi

(2015).

The consideration of a shelter effect has been studied by Iannario (2012a) and successfully

applied in Corduas, Iannario and Piccolo (2009); Iannario and Piccolo (2014). The introduction of

covariates in a cubmodel with a shelter effect has been introduced by Iannario and Piccolo (2012b)

with the definition of gecubmodels: for these models a program written in GAUSS c© language is

currently available.

cubemodels have been proposed and estimated by Iannario (2012b, 2014a,b) whereas the de-

velopment of cubemodels with covariates is due to Piccolo (2015).

Specialized extensions of the cub family of statistical models are:

• Hierarchical cubmodels (hcub): Iannario (2012d)

• cubmodels in case of complex designs: Gambacorta, Iannario and Vaillant (2014)

• Latent class of cubmodels (LC-cub): Grilli, Iannario, Piccolo and Rampichini (2013)

• cubmodels with varying uncertainty (vcub): Gottard, Iannario and Piccolo (2015)

• Nonlinear cubmodels (NL-cub): Manisera and Zuccolotto (2013, 2014b)

• Generalized mixture models with uncertainty: Iannario and Piccolo (2015b)

• cubmodels with “don’t know” option: Manisera and Zuccolotto (2014a)

These bibliographic notes are not exhaustive since they have been limited to the main method-

ological papers which originated the framework of cub models and their extensions. More specific
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contributions have been added by several researchers on specific topics, e.g. clustering ordinal data

(Corduas, 2011a; Deldossi and Zappa, 2014), missing values (Cugnata and Salini, 2014), measure-

ment errors (Deldossi and Zappa, 2011), importance-performance analysis (Cugnata and Salini,

2013; Cugnata, Guglielmetti and Salini, 2014), relationships with multivariate analysis (Iannario

and Maravalle, 2011). In addition, alternative inferential approaches have been pursued, as per-

mutation test (Bonnini, Piccolo, Salmaso and Solmi, 2012) and Bayesian analysis (Deldossi and

Paroli, 2014, 2015). Further analyses concerning multivariate cubmodels are in progress (Corduas,

2011b, 2015; Andreis and Ferrari, 2013; Colombi and Giordano, 2015).

According to the paradigm of cubmodels, a recent extension of cumulative models with an

uncertainty component has been suggested by Tutz, Schneider, Iannario and Piccolo (2014). Finally,

a unified approach which includes both the family of cubmodels and the cumulative ones has been

proposed Iannario and Piccolo (2015b) whereas a critical comparison among cub and proportional

odd models has been advanced by Iannario and Piccolo (2015c).
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